Effects of modulation range and presentation rate of FM stimulus on auditory response properties of mouse inferior collicular neurons.
نویسندگان
چکیده
In natural acoustical environments, most biologically related sounds containing frequency-modulated (FM) components repeat over periods of time. They are often in rapid sequence rather than in temporal isolation. Few studies examined the neuronal response patterns evoked by FM stimuli at different presentation rates (PR). In the present investigation, by using normal electrophysiological technique, we specifically studied the temporal features of response of the inferior collicular (IC) neurons to FM sweeps with different modulation ranges (MR) in conditions of distinct PR in mouse. The results showed that most of the recorded neurons responded best to narrower MRs (narrow-pass, up-sweep: 60.00%, 54/90; down-sweep: 63.33%, 57/90), while a small fraction of neurons displayed other patterns such as band-pass (up-sweep, 16.67%, 15/90; down-sweep, 18.89%, 17/90), all-pass (up-sweep, 18.89%, 17/90; down-sweep, 13.33%, 12/90) and wide-pass (up-sweep, 4.44%, 4/90; down-sweep, 4.44%, 4/90). Both the discharge rate and duration of recorded neurons decreased but the latency lengthened with increase in PR, when different PRs from 0.5/s to 10/s of FM sound were used. The percentage of total directional selective neurons, up-directional selective neurons, and down-directional selective neurons changed with the variation of PR or MR. These results indicate that temporal features of mouse midbrain neurons responding to FM sweeps are co-shaped by the MR and PR. Possible mechanisms underlying may be related to spectral and temporal integration of the FM sound by the IC neurons.
منابع مشابه
Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bats.
In the Jamaican mustached bat, Pteronotus parnellii parnellii, one of the subdivisions of the primary auditory cortex is disproportionately large and over-represents sound at approximately 61 kHz. This area, called the Doppler-shifted constant frequency (DSCF) processing area, consists of neurons extremely sharply tuned to a sound at approximately 61 kHz. We found that a focal activation of the...
متن کاملGABAergic disinhibition affects responses of bat inferior collicular neurons to temporally patterned sound pulses.
Using the big brown bat, Eptesicus fuscus, as a model mammalian auditory system, we studied the effect of GABAergic disinhibition by bicuculline on the responses of inferior collicular (IC) neurons to temporally patterned trains of sound pulses delivered at different pulse repetition rates (PRRs) under free-field stimulation conditions. All 66 neurons isolated from eight bats either discharged ...
متن کاملSelectivity for the rate of frequency-modulated sweeps and its affecting factors in the inferior collicular neurons of mouse LIAO Yang1, ZANG Xu-Dong1, HAN Xiao-Yan1, LI An-An2, CHEN Qi-Cai1, WU Fei-Jian1,*
Both animal communication sounds and human speech contain frequency-modulated (FM) sweeps. Although the selectivity for the rate of FM sweeps in neurons has been found in many kinds of animals at different levels of the central auditory structures, the underlying neural mechanism is still not clear. Using extracellular single unit recording techniques, we examined the selectivity for the rate o...
متن کاملMultiparametric corticofugal modulation of collicular duration-tuned neurons: Modulation in the amplitude domain Running title: Corticofugal modulation of collicular neurons
The subcortical auditory nuclei contain not only neurons tuned to a specific frequency, but also those tuned to multiple parameters characterizing a sound. All these neurons are potentially subject to modulation by descending fibers from the auditory cortex (corticofugal modulation). In the past, we electrically stimulated cortical durationtuned neurons of the big brown bat, Eptesicus fuscus, a...
متن کاملCorticofugal inhibition compresses all types of rate-intensity functions of inferior collicular neurons in the big brown bat.
Recent studies have shown that the auditory corticofugal system modulates and improves signal processing in the frequency, time and spatial domains. In this study, we examine corticofugal modulation of rate-intensity functions of inferior collicular (IC) neurons of the big brown bat, Eptesicus fuscus, by electrical stimulation in the primary auditory cortex (AC). Cortical electrical stimulation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Sheng li xue bao : [Acta physiologica Sinica]
دوره 62 3 شماره
صفحات -
تاریخ انتشار 2010